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Abstract

We generalize the well-known lower estimates for the first eigenvalue of the Dirac operator on
a compact Riemannian spin manifold proved by Friedrich [Math. Nachr. 97 (1980) 117–146] and
Hijazi [Math. Phys. 104 (1986) 151–162; J. Geom. Phys. 16 (1995) 27–38]. The special solutions
of the Einstein–Dirac equation constructed recently by Friedrich/Kim are examples for the limiting
case of these inequalities. The discussion of the limiting case of these estimates yields two new field
equations generalizing the Killing equation as well as the weak Killing equation for spinor fields.
Finally, we discuss the two-and three-dimensional case in more detail. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The first sharp estimate for the eigenvaluesλ of the Dirac operator defined on a com-
pactn-dimensional Riemannian spin manifold was obtained by Friedrich in 1980. Using a
suitable deformation of the Riemannian connection he proved the inequality

λ2 ≥ 1

4

n

n− 1
S0,

whereS0 denotes the minimum of the scalar curvatureS. The discussion of the limiting case
yields a stronger first order equation, the so-called spinorial Killing equation (see [4,5]). In
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1986 Hijazi (see [9]) generalized this inequality. He combined the technique used before
with a conformal change of the metric and obtained the inequality

λ2 ≥ 1

4

n

n− 1
inf
M

{
S + 4(n− 1)

n− 2
u−11(u)

}
.

This estimate holds for any positive functionu defined on a compact Riemannian spin man-
ifold of dimensionn ≥ 3 and the discussion of the limiting case yields again essentially
the spinorial Killing equation. In particular,λ2 is bounded from below by(1/4)(n/(n −
1))µ1, whereµ1 is the first eigenvalue of the Yamabe operator ([12,13]). The simple
identity

n− 1

n− 2
u−11(u) = 1(f )− n− 2

n− 1
|df |2, f = n− 1

n− 2
log(u)

allows us to rewrite the Hijazi inequality in the following equivalent form:

λ2 ≥ n

4(n− 1)
inf
M

{
S + 41(f )− 4

n− 2

n− 1
|df |2

}
.

The advantage of this reformulation of the Hijazi inequality is the fact that the latter estimate
is even true in dimensionn ≥ 2. This observation was made by Bär in 1992 (see [2]). In
particular, using the Gauss–Bonnet theorem one obtains for any metricg on the sphereS2

the inequality

λ2 ≥ 4π

vol(S2, g)
.

Consequently, the Lott constant (see [14]) of the 2-sphere equals 4π , a value already con-
jectured by Lott in 1986. In 1992 Hijazi (see [10]) generalized the mentioned inequality
by taking into account the energy–momentum tensor of the eigenspinor. This tensor oc-
curs in the Einstein–Dirac equations describing the interaction of a particle of spin 1/2
with the gravitational field. Recently, we have constructed many solutions of this nonlinear
system (see [11]). Therefore, we have revisited the Hijazi inequality once again. Using
deformations of the Riemannian connection depending on more free parameters than in
all investigations before, we will prove an estimate (see Theorem 3.4) containing all these
inequalities as special cases. Moreover, the weak Killing spinors that are special solutions
of the Einstein–Dirac equation constructed in [11] are examples of spinors realizing the
limiting case in our new estimate. The discussion of the limiting case of these estimates
yields two new field equations generalizing the spinorial Killing equation as well as the
weak Killing equation.

2. Generalization of the Hijazi inequality

Let (Mn, g) be ann-dimensional connected oriented compact Riemannian spin manifold
without boundary. We consider two conformally related metricsg = e−2hg, whereh is a
real-valued smooth function onMn. Let us denote byΣ(M)g andΣ(M)g the spinor bundle
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of (Mn, g) and(Mn, g), respectively. There are natural isomorphismsj : T (M) → T (M)

andj : Σ(M)g → Σ(M)g preserving the inner products of vectors and spinors as well as
the Clifford multiplication:

g(jX, jY) = g(X, Y ), 〈jϕ, jψ〉g = 〈ϕ,ψ〉g,
(jX) · (jψ) = j (X · ψ), X, Y ∈ Γ (T (M)), ϕ, ψ ∈ 0(6(M)g).

Letψ be a spinor field on(Mn, g) and denote byψ := j (ψ) the corresponding spinor field
on (Mn, g). We use the same notation for vector fields,X := j (X). Then the following
formulas relating the connections∇,∇ as well as the Dirac operatorsD,D are well known
(see [3,6,7]).

Lemma 2.1.
1. grad(f ) = eh grad(f ),

2. ∇X(e((n−1)/2)hψ) = e((n−1)/2)h{∇Xψ+ (n/2)g(grad(h),X)ψ+ (1/2)X ·grad(h) ·ψ},
3. D(e((n−1)/2)hψ) = e((n+1)/2)hDψ,

4. (D ◦D)(e((n−1)/2)hψ) = e((n+3)/2)h{D2ψ + grad(h) ·Dψ}.
For later reference, we shall first assemble a few technical results. First, Lemma 2.1 (2)
implies immediately the following result.

Corollary 2.2. Suppose that a spinor fieldψ on (Mn, g) satisfies the equation

∇X

(
e((n−1)/2)hψ

)
= e((n−1)/2)h

{
−λ
n

eh X · ψ + ag(grad(h),X)ψ + bX · grad(h) · ψ
}

for some real numbersλ, a, b ∈ R and for all vector fieldsX. Then the corresponding
spinor fieldψ on (Mn, g) satisfies the equations

∇Xψ = −λ
n
X · ψ +

(
a − n

2

)
dh(X)ψ +

(
b − 1

2

)
X · grad(h) · ψ

and

Dψ = λψ + (a − nb)grad(h) · ψ.

Lemma 2.3. Letψ be an eigenspinor of the Dirac operatorD of (Mn, g) with eigenvalue
0 6= λ ∈ R such that

∇Xψ = −λ
n
X · ψ + ndf (X)ψ +X · grad(f ) · ψ

holds for some real-valued functionf and for all vector fieldsX. Thenf is constant
onMn.
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Proof. The formula1
2Ric(X) · ϕ = D(∇Xϕ)− ∇X(Dϕ)− ∑n

u=1Eu · ∇∇EuXϕ (see [11])
yields

Ric(El) · ψ =
{

4(n− 1)λ2

n2
− 21(f )+ 4(n− 2)|df |2

}
El · ψ

+2(n− 2)∇Eldf · ψ − 4(n− 2)df (El)df · ψ − 4λ

n
El · df · ψ

+4(n− 2)λ

n
df (El)ψ.

Contracting this equation we obtain

Sψ=
{

4(n− 1)λ2

n
−4(n− 1)1(f )+4(n− 1)(n− 2)|df |2

}
ψ − 8(n− 1)λ

n
df · ψ,

and consequently, df ≡ 0. �

Lemma 2.4(see [11]).Letψ be a spinor field on(Mn, g) such that

∇Xψ = β(X) · ψ + ndf (X)ψ +X · grad(f ) · ψ

holds for a real-valued functionf , for a symmetric(1,1)-tensor fieldβ and for all vector
fieldsX. Then we have the formula

{Tr(β)}2 = S

4
+ |β|2 + (n− 1)1(f )− (n− 1)(n− 2)|df |2.

The scalar curvatureS of (Mn, g) is related to the scalar curvatureS of (Mn, g) by a
well-known formula. We formulate this equation in two different ways, first for all dimen-
sionsn ≥ 2 and then for dimensionsn ≥ 3.

Lemma 2.5.

S =
{

e2h{S − 2(n− 1)1(h)− (n− 1)(n− 2)|dh|2} (if n ≥ 2),

e2h
{
S + (4(n− 1)/(n− 2))e((n−2)/2)h1(e(−(n−2)/2)h)

}
(if n ≥ 3).

Let us now proceed to the main topic of this article. For this, we repeat once again the
proof of the Hijazi inequality. Let us denote the real part of the hermitian inner product
of spinors by(, )g (resp.(, )g) and letvg (resp.vg) be the volume form of(Mn, g) (resp.
(Mn, g)). For shortness we introduce the notationψh := e((n−1)/2)hψ . Using Lemmas 2.1
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and 2.5 one verifies that

0 ≤
n∑
i=1

∫
Mn

(
∇Ei

ψh + λ

n
ehEi · ψh,∇Ei

ψh + λ

n
ehEi · ψh

)
g

vg

=
∫
Mn

{(
(D ◦D)(ψh)− 1

4
S ψh,ψh

)
g

− 2λ

n
eh

(
D(ψh), ψh

)
g

+ λ2

n
e2h (

ψh,ψh
)
g

}
vg

=
∫
Mn

e(n+1)h
(
λ2 − 1

4
e−2h S − 2λ2

n
+ λ2

n

)
(ψ,ψ)g e−nhvg

=
∫
Mn

eh
{
n− 1

n
λ2 − S

4
+ n− 1

2
1(h)+ (n− 1)(n− 2)

4
|dh|2

}
(ψ,ψ)g vg.

If the dimension satisfiesn ≥ 3, we rewrite the latter equation in the following equivalent
form:

0 ≤
∫
Mn

eh
{
n− 1

n
λ2 − S

4
− n− 1

n− 2
u−11(u)

}
(ψ,ψ)g vg,

where the arbitrary positive functionu is related toh by u := e(−(n−2)/2)h. Then we obtain
the Hijazi inequality (see [9]):

(∗) λ2 ≥ n

4(n− 1)
inf
M

{
S + 4(n− 1)

n− 2
u−11(u)

}
, n ≥ 3.

The fourth line of the above calculation yields an equivalent version of this inequality valid
for all dimensionsn ≥ 2:

λ2 ≥ n

n− 1
inf
M

{
S

4
+1(f )− n− 2

n− 1
|df |2

}
.

An eigenspinorψ of the Dirac operatorD for the limiting eigenvalueλsatisfies, by Corollary
2.2, the stronger field equation

∇Xψ = −λ
n
X · ψ − n

2
dh(X)ψ − 1

2
X · grad(h) · ψ

for all vector fieldsX. In caseλ 6= 0, we conclude, by Lemma 2.3, thath is constant,
and therefore,ψ is a Killing spinor. In caseλ = 0, the spinor e((n−1)/2)hψ is parallel on
(Mn, g). Now we prove the main result of this section.

Theorem 2.6. Let (Mn, g) be a compact Riemannian spin manifold of dimensionn ≥ 2.
For any eigenvalueλ of the Dirac operatorD the inequality

λ2 ≥ n

n− 1
inf
M

{
S

4
−

(
n− 1

2
− a

)
1(h)

−
(
(n− 1)(n− 2)

4
+ a2 + nb2 − na+ 2a − 2ab

)
|dh|2

}
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holds for all real-valued functions h onMn and for all real numbersa, b ∈ R. Equality
occurs if and only if either(Mn, g) admits a Killing spinor or if there is a conformally
equivalent metricg such that(Mn, g) admits a parallel spinor.

Proof. Let ψ be an eigenspinor of the Dirac operatorD with eigenvalueλ and consider
again the spinor fieldψh = e((n−1)/2)hψ . Define for any real numbersa andb the spinor

P(X) := ∇Xψh + λ

n
eh X · ψh − a eh dh(X)ψh − b eh X · grad(h) · ψh.

Then a direct calculation using Lemmas 2.1 and 2.5, and the Schrödinger–Lichnerowicz
formulaD2 = 1+ 1

4S yields the equation

0 ≤
n∑
i=1

∫
Mn

(P (Ei), P (Ei))vg =
∫
Mn

eh H |ψ |2vg,

where the functionH is given by the formula

H = n− 1

n
λ2 − S

4
+

(
n− 1

2
− a

)
1(h)

+
(
(n− 1)(n− 2)

4
+ a2 + nb2 − na+ 2a − 2ab

)
|dh|2.

This identity proves the inequality of the theorem. Now we discuss the limiting case. By
Corollary 2.2 we obtain the following differential equation for an eigenspinorψ1 with the
limiting eigenvalueλ1:

∇Xψ1 = −λ1

n
X · ψ1 +

(
a − n

2

)
dh1(X)ψ1 +

(
b − 1

2

)
X · grad(h1) · ψ1

as well as the condition that(a − nb)grad(h1) ≡ 0. If λ1 6= 0 andh1 is not constant, then
a = nb and we concludeb = 1

2 by Lemma 2.3, i.e.,ψ1 is a Killing spinor. In case that
λ1 = 0 andh1 is not constant, we have

∇Xψ1 = n

(
b − 1

2

)
dh1(X)ψ1 +

(
b − 1

2

)
X · grad(h1) · ψ1.

Moreover, the limiting case of the inequality as well as Lemma 2.4 yield the two equations

0= S

4
−

(
n− 1

2
−nb

)
1(h1)−

(
(n− 1)(n− 2)

4
+n(n− 1)b2 − n(n− 2)b

)
|dh1|2

= S

4
+ (n− 1)

(
b − 1

2

)
1(h1)− (n− 1)(n− 2)

(
b − 1

2

)2

|dh1|2.

Therefore,b = 0, thus implying by Corollary 2.2 that∇X(e((n−1)/2)h1ψ1) = 0. Conse-
quently, e((n−1)/2)h1 ψ1 is a parallel spinor with respect to the metricg = e−2h1g. The
converse can easily be proved using Lemma 2.4. �
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Remark. One can maximize this estimate with respect to the quadratic term|dh|2 only.
Then the optimal parameters are

a = n

2
· n− 2

n− 1
, b = 1

2
· n− 2

n− 1
,

and we obtain

λ2 ≥ n

n− 1
inf
M

{
S

4
+ 1

2(n− 1)
1(h)− n− 2

4(n− 1)
|dh|2

}
.

3. Lower eigenvalue estimates using the energy–momentum tensor

Any eigenspinorψ of the Dirac operatorD of (Mn, g) induces a symmetric (0,2)-tensor
field Tψ defined by

Tψ(X, Y ) = (X · ∇Yψ + Y · ∇Xψ,ψ),
which is the energy–momentum tensor in the Einstein–Dirac equation (see [11]). Over the
open dense subsetMψ := {x ∈ Mn : ψ(x) 6= 0} we define the tensor field

T̂ψ (X, Y ) := (X · ∇Y ψ̂ + Y · ∇Xψ̂, ψ̂) = 1

|ψ |2Tψ(X, Y ),

where ψ̂ := ψ/|ψ | is the normalized spinor. Hijazi (see [10]) proved the following
eigenvalue estimates for the Dirac operator depending on the scalar curvatureS, the first
eigenvalueµ1 of the Yamabe operator and on the length ofT̂ψ :

(∗∗) λ2 ≥ 1

4
inf
Mψ

(S + |T̂ψ |2) and λ2 ≥ 1

4
µ1 + 1

4
inf
Mψ

|T̂ψ |2.

In this section we will improve the inequalities(∗∗) and show the limiting case explicitly.
Forg, g andψh defined as above, one easily verifies the following formulas.

Lemma 3.1.
1. T̂ψh(Ek, El) = eh T̂ψ(Ek,El) (1 ≤ k, l ≤ n),

2.
∑n
i=1(T̂ψh

(Ei) · ∇Ei
ψh, ψh)g = 1

2e(n+1)h|T̂ψ |2(ψ,ψ)g.
Corollary 2.2 can easily be generalized:

Lemma 3.2. Letψ be a spinor field on(Mn, g) andU an open subset ofMn. Suppose that
the spinor fieldψ satisfies, onU , the equation

∇X(e
((n−1)/2)hψ) = e((n−1)/2)h{eh β(X) · ψ + ag(grad(h),X)ψ + bX · grad(h) · ψ}

for some symmetric(1,1)-tensor fieldβ, a real-valued functionh and for all real numbers
λ, a, b ∈ R (β andhmay be defined on the subset U only). Then the corresponding spinor
fieldψ on (Mn, g) satisfies, onU , the equations

∇Xψ = β(X) · ψ +
(
a − n

2

)
dh(X)ψ +

(
b − 1

2

)
X · grad(h) · ψ
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and

Dψ = −Tr(β)ψ + (a − nb)grad(h) · ψ

Lemma 3.3 (see [11]).Let ψ be a nontrivial spinor field on(Mn, g) such that, on a
connected open subsetU ⊂ Mn, the equation

∇Xψ = β(X) · ψ + nα(X)ψ +X · α · ψ
holds for a1-formα, a symmetric(1,1)-tensor fieldβ and for all vector fieldsX. Thenψ
has no zeros inU andα as well asβ are uniquely determined by the spinor fieldψ via the
relations:

α = d(|ψ |2)
2(n− 1)|ψ |2 and β = −1

2
T̂ψ .

In particular, the1-formα is exact.

Theorem 3.4. Let (Mn, g) be a compact Riemannian spin manifold of dimensionn ≥ 2.
For any eigenspinorψ of the Dirac operator D with eigenvalueλ the inequality

λ2 ≥ inf
Mψ

{
S

4
+ 1

4
|T̂ψ |2 −

(
n− 1

2
− a

)
1(h)

−
(
(n− 1)(n− 2)

4
+ a2 + nb2 − na+ 2a − 2ab

)
|dh|2

}

holds for all real-valued functions h onMn and for all real numbersa, b ∈ R. Equality
occurs if and only if there exists an eigenspinorψ1 without zeros such that the equation

∇Xψ1 = −1

2
T̂ψ1(X) · ψ1 − n

2
dh1(X)ψ1 − 1

2
X · grad(h1) · ψ1

holds for all vector fields X onMn. In this limiting case the functionh1 is uniquely determined
up to constants by the spinor fieldψ1 via the relation

h1 = − log(|ψ1|2)
n− 1

.

Proof. We use a slight modification of the fieldP(X) used in the proof of Theorem 2.6.
Namely, set

Q(X) := ∇Xψh + 1
2 T̂ψh

(X) · ψh − a eh dh(X)ψh − b eh X · grad(h) · ψh.
Then one shows, as before, the equation

0 ≤
n∑
i=1

∫
Mn

(Q(Ei),Q(Ei))vg =
∫
Mn

eh H |ψ |2vg,
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where the functionH is now given by the formula

H = λ2 − S

4
− 1

4
|T̂ψ |2 +

(
n− 1

2
− a

)
1(h)

+
(
(n− 1)(n− 2)

4
+ a2 + nb2 − na+ 2a − 2ab

)
|dh|2.

This yields the inequality of the theorem. For the limiting case, we obtain by Lemma 3.2
the following differential equation for an eigenspinorψ1:

∇Xψ1 = −1

2
T̂ψ1(X) · ψ1 +

(
a − n

2

)
dh1(X)ψ1 +

(
b − 1

2

)
X · grad(h1) · ψ1,

as well as the condition(a − nb)grad(h1) ≡ 0 for a real-valued functionh1 defined on
the whole manifoldMn. According to Lemma 3.3 the eigenspinorψ1 does not vanish
anywhere. The trace of̂Tψ1 is related to the eigenvalue by Tr(T̂ψ1) = 2λ1. In case thath1

is not constant, we havea = nb, and consequently,

∇Xψ1 = −1

2
T̂ψ1(X) · ψ1 + n

(
b − 1

2

)
dh1(X)ψ1 +

(
b − 1

2

)
X · grad(h1) · ψ1.

From the limiting case of the inequality of the theorem and Lemma 2.4 we obtain the
equation

λ2
1 = S

4
+ 1

4
|T̂ψ1|2 −

(
n− 1

2
− nb

)
1(h1)

−
{
(n− 1)(n− 2)

4
+ n(n− 1)b2 − n(n− 2)b

}
|dh1|2

= S

4
+ 1

4
|T̂ψ1|2 + (n− 1)

(
b − 1

2

)
1(h1)− (n− 1)(n− 2)

(
b − 1

2

)2

|dh1|2,

i.e.,b = 0. �

Corollary 3.5. For any positive function u the inequality

λ2 ≥ 1

4
inf
Mψ

{
S + |T̂ψ |2 + 4(n− 1)

n− 2
u−11(u)

}

holds. In particular, if u is the eigenfunction for the first eigenvalueµ1 of the Yamabe
operatorL = (4(n− 1)/(n− 2))1+ S we obtain the inequality(∗∗):

λ2 ≥ 1

4
µ1 + 1

4
inf
Mψ

|T̂ψ |2.

Remark. One can again maximize the estimate of Theorem 3.4 with respect to the quadratic
term|dh|2. The optimal parameters are

a = n

2
· n− 2

n− 1
, b = 1

2
· n− 2

n− 1
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and we obtain

λ2 ≥ inf
Mψ

{
S

4
+ 1

4
|T̂ψ |2 + 1

2(n− 1)
1(h)− n− 2

4(n− 1)
|dh|2

}
.

Remark. Because of the relation

g

(
T̂ψ − 2λ

n
g, T̂ψ − 2λ

n
g

)
= |T̂ψ |2 − 4λ2

n
≥ 0,

the inequality ofTheorem 3.4is stronger than all the estimates(∗), (∗∗) and the estimate
in Theorem 2.6.

Example 1. Let ψ1 be a weak Killing spinor on(Mn, g) with WK-numberλ1, i.e., a
solution of the following differential equation (see [11],n ≥ 3):

∇Xψ = n

2(n− 1)S
dS(X)ψ + 2λ

(n− 2)S
Ric(X) · ψ − λ

n− 2
X · ψ

+ 1

2(n− 1)S
X · dS · ψ,

whereλ is a real number. Thenψ1 satisfies the limiting case of the inequality of Theorem
3.4. Indeed, we have

T̂ψ1 = − 4λ1

(n− 2)S
Ric + 2λ1

n− 2
Id and h1 = − log(|S|)

n− 1
.

Example 2(see [11]). Let(M2m+1, φ, ξ, η, g) be a simply connected Sasakian spin mani-
fold with Ricci tensor Ric= (2m− 4b)g+ 4bη⊗ η, b ∈ R. Then there exists a nontrivial
eigenspinorψ1 of the Dirac operator with eigenvalueλ1 = m+ 1

2 − b such that

∇Xψ1 = −1
2X · ψ1 + bη(X)ξ · ψ1.

This eigenspinorψ1 is an example of the limiting case of the inequality. Moreover, the
length of its energy–momentum tensor is given by

|T̂ψ1|2 = 4λ2
1 + 8mb2

2m+ 1
≥ 4λ2

1

2m+ 1
.

The discussion of the limiting case in the inequalities of Theorem 3.4 yields two new
equations generalizing the Killing equation (see [5]) as well as the weak Killing equation
(see [11]) for spinor fields.

Definition. Let (Mn, g) be a Riemannian spin manifold. A spinor fieldψ without zeros
will be called
1. aT-Killing spinor if the trace Tr(T̂ψ) = (1/|ψ |2)Tr(Tψ) is constant andψ is a solution

of the equation

∇Xψ = −1
2 T̂ψ (X) · ψ, X ∈ T (Mn).
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2. aweak T-Killing spinorif the trace Tr(T̂ψ) = (1/|ψ |2)Tr(Tψ) is constant andψ is a
solution of the equation

∇Xψ = −1

2
T̂ψ (X) · ψ − n

2
dh(X)ψ − 1

2
X · grad(h) · ψ,

whereh is the functionh = −log(|ψ |2)/(n− 1).

The following table lists the different kinds of eigenspinors of the Dirac operator we
introduced as well as the necessary geometric condition for the underlying space.

4. Two- and three-dimensional case

In this section we investigate the two- and three-dimensional case and present some
properties of eigenspinors of the Dirac operator. For algebraic reasons we can express, in
these dimensions, the covariant derivative of an eigenspinor by the spinor itself (see [11]).

Lemma 4.1. Let (Mn, g) be a two- or three-dimensional Riemannian spin manifold, and
letψ be an eigenspinor of the Dirac operator D with eigenvalueλ ∈ R. Then we have on
the subsetMψ :

∇Xψ = −1
2 T̂ψ (X) · ψ + nα(X)ψ +X · α · ψ

for a 1-formα, which is uniquely determined by the spinor fieldψ via the relation

α = d{log(|ψ |2)}
2(n− 1)

.

In any dimension we have proved (see [11]) the following estimate for the eigenvalue of
the Dirac operator.
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Lemma 4.2(see [11]).Letψ be an eigenspinor of the Dirac operator D with eigenvalue
λ ∈ R. Then the following inequality holds at any point ofMψ :

λ2 ≥ S

4
+ |T̂ψ |2

4
+ 1(|ψ |2)

2|ψ |2 + n|d(|ψ |2)|2
4(n− 1)|ψ |4 .

Equality occurs if and only if there exists an eigenspinorψ1 of D as well as a1-form α1

such that onMψ1:

∇Xψ1 = −1
2 T̂ψ1(X) · ψ1 + nα1(X) · ψ1 +X · α1 · ψ1

holds for all vector fields X.

A direct consequence of Lemma 4.1 and 4.2 is the next theorem.

Theorem 4.3. Let (Mn, g) be a two-or three-dimensional Riemannian spin manifold and
ψ be an eigenspinor of the Dirac operator D with eigenvalueλ ∈ R. Then we have at any
point ofMψ :

λ2 = S

4
+ |T̂ψ |2

4
+ 1(|ψ |2)

2|ψ |2 + n|d(|ψ |2)|2
4(n− 1)|ψ |4 .

In particular, if both the scalar curvature S and|ψ |2 are constant, then|T̂ψ |2 is constant.

Theorem 4.4. Let(M3, g) be a three-dimensional compact Riemannian spin manifold and
ψ a nowhere-vanishing eigenspinor of the Dirac operator D with eigenvalueλ. Then we
have

λ2 · vol(M3, g) ≤ 1

4

∫
M3

{S + |T̂ψ |2}.

Equality occurs if and only if|ψ |2 is constant.

Proof. By Theorem 4.3 we have

λ2 = S

4
+ |T̂ψ |2

4
+ 21(f )− 2|df|2,

wheref = 1
4log(|ψ |2). Integrating this equation we immediately obtain the inequality of

the theorem. �

Remark. Let(M3, g)be a three-dimensional Riemannian manifold with nowhere-vanishing
scalar curvature S. Letψ be an Einstein spinor(see[11]) for the eigenvalueλ, i.e., a solution
of the nonlinear systemD(ψ) = λψ , Ric− 1

2Sg= ±1
4Tψ . Then

|T̂ψ |2 = 4λ2
(

4|Ric|2
S2

− 1

)
,
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and hence, Theorem 4.4yields

λ2
{

vol(M3, g)− 2
∫
M3

|Ric|2
S2

}
≤ 1

8

∫
M3
S.

Theorem 4.5. Let (M2, g) be a two-dimensional compact Riemannian spin manifold and
ψ a nowhere-vanishing eigenspinor of the Dirac operator D with eigenvalueλ. Then we
have
1. λ2 = (πχ(M2)/vol(M2, g))+ (1/4 vol(M2, g))

∫
M

|T̂ψ |2,

2.
∫
M

det(T̂ψ) = 2πχ(M2).

Assume that|ψ |2 is constant. Then̂Tψ is nondegenerate at a pointx ∈ M2 if and only if
the scalar curvature S does not vanish at x.

Proof. By Theorem 4.3 we have

λ2 = S

4
+ |T̂ψ |2

4
+1(f ),

wheref = 1
2log(|ψ |2). The Gauss–Bonnet theorem yields immediately the first equality

of the theorem. Inserting

det(T̂ψ) = 1
2{Tr(T̂ψ)}2 − 1

2Tr{(T̂ψ)2} = 2λ2 − 1
2|T̂ψ |2

intoλ2 = (S/4)+ (|T̂ψ |2/4)+1(f ), we obtain det(T̂ψ) = (S/2)+21(f ), which implies
the second identity (2) as well as the last statement of the theorem. �

Remark. Since|T̂ψ |2 ≥ 2λ2 in the two-dimensional case, Theorem 4.5gives the inequality

λ2 ≥ 2πχ(M2)

vol(M2, g)
.

Example 1. Let f : M2 ↪→ R
3 be an isometric immersion of a closed surfaceM2 into

the Euclidean spaceR3 and suppose that the mean curvatureH is constant. A fixed parallel
spinorΦ onR3 and its restriction onto the surfaceM2 define an eigenspinorϕ of length
one of the Dirac operatorD on the surface(M2, g). Moreover, this eigenspinor is a solution
of the twistor type equation

∇Xϕ = −1
2II (X) · ϕ, X ∈ T (M2),

where II denotes the second fundamental form of the surface (see [8]). The length|Tϕ |2
coincides with the length|II |2 of the second fundamental form. The formulas of Theorem
4.5 are then simply the Gauss–Bonnet theorem and

H 2 = πχ(M2)

vol(M2, g)
+ 1

4 vol(M2, g)

∫
M2

|II |2.

Notice that this yields examples ofT -Killing spinors on any surface of constant mean
curvature inR3.
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Example 2. Consider the two-dimensional torusT 2 = R2/Z2 equipped with anS1-invariant
Riemannian metric

g = h4(x){dx2 + dy2}
and denote byλ2

1(l) the first eigenvalue of the Dirac operator with respect to the trivial spin
structure such that theS1-representation of weightl 6= 0 occurs in the eigenspaceE(λ).
Then the multiplicity of this representation inE(λ) is 1 and the corresponding unique
eigenspinor does not vanish at all (see [1]).
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